Connections Between Euclidian Distance Matrix and Positive Semidefinite Matrix Euclid was not always right. 欧几里得距离矩阵与半正定矩阵的关系欧几里德不一定全对。
This paper is concerned with the problem of real symmetric positive semidefinite matrix pencil under spectral restriction. 本文讨论谱约束下实对称半正定矩阵束的最佳逼近问题,指出一般算法。
Therefore the complete positivity of a doubly nonnegative matrix can be reduced to the case for a doubly stochastic 、 positive semidefinite matrix. 因此一个双非负矩阵的完全正性等价于其对应的双随机矩阵的完全正性。
The Trace of A Positive Semidefinite Hermite Matrix and Its Application 半正定Hermite矩阵的迹及其应用
Second, an unconditional Haynsworth matrix inequality for positive semidefinite Hermitian matrix is presented. 然后给出一个无约束条件的Haynsworth矩阵不等式的在半正定Hermitian矩阵的推广形式。
Equivalent representations of squares being complex positive semidefinite matrix 平方为复半正定矩阵的一个等价表征
The paper studied the multiobjective semidefinite programming with a semidefinite constraint of a matrix function and a multiobjective function. 主要研究含矩阵函数半定约束和向量函数等式约束以及多个目标函数的多目标半定规划的对偶和鞍点问题。
Based on the semidefinite programming relaxation of max-cut problem, an equivalent nonlinear programming model is given by decomposing the matrix, and a successive linear programming method is proposed to solve the nonlinear programming model. 本文基于最大割问题的半定规划松弛,利用矩阵分解的方法给出了与半定规划松弛等价的非线性规划模型,提出一种序列线性规划方法求解该模型。
A is called a positive semidefinite matrix, if for all x ∈ Cn, Re ( XHAX)≥ 0; 若对所有n维复向量X都有Re(x~HAx)≥0,则称A为半正定矩阵;
In the method, the symmetric positive semidefinite matrices are updated to approximate the Hessian matrices of the elemental objective functions and their sum to approximate the Hessian matrix of the objective function. 算法用对称半正定矩阵作为元素目标函数的Hessian阵的近似,使得其和仍然保持目标函数的Hessian阵的某种稀疏性。
In this paper, several full and necessary conditions of complex positive semidefinite matrix and some properties of its eigenvalue are discussed. 定义半正定复矩阵,给出复矩阵半正定的几个充要条件,论证半正定复矩阵特征值的一些性质。
The inverse problems for real part positive semidefinite matrix 实部半正定矩阵反问题
The canonical form and inequalities of the norm of determinant for complex semidefinite positive matrix 复半正定矩阵的标准形及行列式模的不等式
Triangular ( LL~ T) Decomposition of Real Symmetric Positive Semidefinite Matrix 实对称半正定矩阵的三角(LL~T)分解
Positive Semidefinite Hermitian Matrix Solution of a Matrix Equations 一个矩阵方程组的半正定Hermitian矩阵解
The geometric-arithmetric-mean inequality for positive semidefinite matrix traces 关于半正定矩阵迹的几何&算术平均不等式
Based on the special decomposition of Hankel matrix, we can transform the problem of approximating a given matrix with a positive semidefinite real Hankel matrix of lower rank to a smooth unconstrained optimization problem. 对矩阵的低秩Hankel半正定矩阵逼近,采用特殊的分解形式,可将其转化为一个无约束的优化问题进行求解,本文应用拟牛顿方法求解无约束优化问题。
Majorization inequalities are used to derive some inequalities about the trace, singular values and diagonal elements of semidefinite matrix, normal matrix and general matrix. 利用控制不等式这一工具证明了关于半正定矩阵、规范矩阵和一般矩阵的迹、奇异值和对角元素之间的一系列不等式。
Positive Semidefinite Quadratic Form and Positive Semidefinite Matrix 半正定二次型及半正定矩阵
Equivalent Propositions of Positive Semidefinite Hermitian Matrix 半正定Hermitian矩阵的等价命题
First, we point out that the Haynsworth matrix inequality on positive definite Hermitian matrix does not work for generalized positive semidefinite matrix. 首先指出关于正定Hermitian矩阵的Haynsworth矩阵不等式对半正定Hermitian矩阵是不成立的;
The paper proves that the tensor product of semidefinite positive matrix is a semidefinite positive matrix by means of spectrum decomposition of a matrix, and gives out a condition of equivalence for the semidefinite positive matrix ( definite positive matrix). 利用半正定矩阵的谱分解这一工具证明了半正定(或正定)矩阵的张量积仍为半正定矩阵,同时还给出了矩阵为半正定(或正定)的一个等价条件。